
Towards a Machine Learning-Assisted Kernel with LAKE
Henrique Fingler

hfingler@cs.utexas.edu
The University of Texas at Austin

Austin, USA

Isha Tarte
tarteisha@utexas.edu

The University of Texas at Austin
Austin, USA

Hangchen Yu
athy@meta.com

Meta
Menlo Park, USA

Ariel Szekely
arielck@mit.edu

Massachusetts Institute of Technology
Cambridge, USA

Bodun Hu
bodunhu@utexas.edu

The University of Texas at Austin
Austin, USA

Aditya Akella
akella@cs.utexas.edu

The University of Texas at Austin
Austin, USA

Christopher J. Rossbach
rossbach@cs.utexas.edu

The University of Texas at Austin
Katana Graph
Austin, USA

ABSTRACT
The complexity of modern operating systems (OSes), rapid diversifi-
cation of hardware, and steady evolution of machine learning (ML)
motivate us to explore the potential of ML to improve decision-
making in OS kernels. We conjecture that ML can better manage
tradeoff spaces for subsystems such as memory management and
process and I/O scheduling that currently rely on hand-tuned heuris-
tics to provide reasonable average-case performance. We explore
the replacement of heuristics with ML-driven decision-making in
five kernel subsystems, consider the implications for kernel design,
shared OS-level components, and access to hardware acceleration.
We identify obstacles, address challenges and characterize tradeoffs
for the benefits ML can provide that arise in kernel-space.

We find that use of specialized hardware such as GPUs is critical
to absorbing the additional computational load required by ML deci-
sioning, but that poor accessibility of accelerators in kernel space is
a barrier to adoption. We also find that the benefits of ML and accel-
eration for OSes is subsystem-, workload- and hardware-dependent,
suggesting that using ML in kernels will require frameworks to
help kernel developers navigate new tradeoff spaces. We address
these challenge by building a system called LAKE for supporting ML
and exposing accelerators in kernel space. LAKE includes APIs for
feature collection and management across abstraction layers and
module boundaries. LAKE provides mechanisms for managing the
variable profitability of acceleration, and interfaces for mitigating
contention for resources between user and kernel space. We show
that an ML-backed I/O latency predictor can have its inference time
reduced by up to 96% with acceleration.

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada
© 2023 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9916-6/23/03.
https://doi.org/10.1145/3575693.3575697

CCS CONCEPTS
• Software and its engineering→ Operating systems; • Com-
puting methodologies → Machine learning approaches; • Com-
puter systems organization→ Single instruction, multiple data.

KEYWORDS
ML for systems, systems for ML, accelerators, GPU, operating sys-
tems

ACM Reference Format:
Henrique Fingler, Isha Tarte, Hangchen Yu, Ariel Szekely, Bodun Hu, Aditya
Akella, and Christopher J. Rossbach. 2023. Towards a Machine Learning-
Assisted Kernel with LAKE. In Proceedings of the 28th ACM International Con-
ference on Architectural Support for Programming Languages and Operating
Systems, Volume 2 (ASPLOS ’23), March 25–29, 2023, Vancouver, BC, Canada.
ACM,NewYork, NY, USA, 16 pages. https://doi.org/10.1145/3575693.3575697

1 INTRODUCTION
Hardware evolution and diversification is driving an explosion in
the complexity of modern operating systems. CPU core counts
have grown, new memory technologies such as HBM and NVM
and organizations such as NUMA have become commonplace, and
new networking and acceleration technologies have emerged, all of
which put pressure on OSes for efficient resource management that
preserves the promises of the hardware. OS kernels incorporate
subsystems to manage these resources, such as memory managers,
I/O and process scheduling, and file systems, and currently rely on
heuristics to handle complex trade off spaces that are critical to
performance. Such heuristics are developed by observing system
behavior, incorporating kernel developers’ experience and aim to
provide reasonable average-case performance.

As hardware and software complexity continue to increase, ML
has become an attractive alternative with the potential to better
navigate OS tradeoff spaces currently handled by heuristics. Replac-
ing heuristics with ML can enable system-specific solutions trained

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.

846

https://doi.org/10.1145/3575693.3575697
https://doi.org/10.1145/3575693.3575697
https://www.acm.org/publications/policies/artifact-review-and-badging-current
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3575693.3575697&domain=pdf&date_stamp=2023-01-30

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Henrique Fingler, Isha Tarte, Hangchen Yu, Ariel Szekely, Bodun Hu, Aditya Akella, and Christopher J. Rossbach

using real, dynamically, observed behavior. While ML-backed poli-
cies in OS subsystems have been proposed, such as CPU load bal-
ancing [16], file system prefetching [11, 26, 49], I/O latency pre-
diction [32], controlling CPU clock and power [60, 82] and oth-
ers [32, 46, 71, 82, 87], previous works have focused only demon-
strating the potential benefit of ML for individual subsystems. We
focus instead on the systems challenges that arise from integration
of ML decisioning into an OS kernel.

We study five heuristic-based kernel subsystems that can be aug-
mented with ML decisioning, including process scheduling, mem-
ory management, and others. We identify a number of important
challenges, including the following.C1 Use of specialized hardware
such as GPUs/TPUs can be critical for reducing the performance
impact of ML algorithms, but poor accessibility of accelerators in
kernel space is a barrier to adoption. Accelerator offload introduces
additional overheads when accelerators are I/O attached and cre-
ates potential for new forms of contention between user and kernel
space for using accelerators. C2 The benefit of acceleration for
ML is subsystem-, workload-, and hardware-dependent, because
hardware acceleration must amortize the cost of data transfers. C3
A fundamental tension exists between abstraction layer boundaries
and the need for cross-layer data sharing to expose features for
training and inference. We address these challenges in this paper,
and share our experience building a Learning-assisted, Accelerated
KErnel (LAKE).

To address C1, LAKE uses API remoting to provide kernel space
applications with the vendor-supported accelerator interfaces (e.g.
CUDA APIs) and, for applications that require use of libraries that
are impractical to port to kernel space, custom, high-level APIs
(e.g. TensorFlow). LAKE reduces overheads with zero-copy data
movement between kernel applications and user space compo-
nents. Concurrent use of specialized hardware by user and kernel
space introduces contention that LAKE manages with policy call-
back framework. We find that the same mechanisms required to
manage that contention can be repurposed to address C2, variable
profitability of specialized hardware. LAKE provides a custom policy
interface for contention control that allows the kernel to exploit ac-
celerators or fall back to less intensive and/or CPU-based solutions
when contention or lack of performance benefit is predicted by the
policy. LAKE addresses C3 with an in-kernel feature store that sim-
plifies the task of instrumenting kernel subsystems to collect data
that inform training and inference based on APIs that anticipate
challenges like asynchrony and abstraction layer boundaries.

Our experiments show that LAKE provides efficient hardware
acceleration for ML-backed subsystems in kernel space, can reduce
CPU utilization by the kernel and avoids performance degradation
to user space applications through contention management. For
example LAKE provides performance benefits for ML-assisted I/O
latency prediction, reducing inference time by up to 95%, and ML-
driven load balancing inference speedup of up to 3.1×. As our focus
is on systems issues arising from in-kernel ML integration, we rely
on previous results from the literature demonstrating improvements
from ML-backed policy relative to heuristics. However, we present
an end-to-end case study for IO-scheduling characterizing the im-
pact of acceleration, finding that ML’s benefits are preserved, and
that hardware acceleration can enable use of richer models. We find
that LAKE’s infrastructure can also be used to enable acceleration

opportunities outside theML domain.We evaluate GPU-accelerated
file system encryption, finding potential read throughput increase
up to 62% relative AES-NI [28] and up to 64% CPU utilization re-
duction. The contributions of this paper are:

• A framework for exposing ML-focused hardware accelera-
tion in kernel space (§4), with interfaces to manage con-
tention (§4.3) and the variable performance profitability
(§4.2) for kernel/user space hardware accelerator sharing.

• A framework and efficient APIs to simplify feature collection
and management in different kernel subsystems (§5).

• Evaluation of CPU utilization reduction and performance
gains of existing kernel subsystems when powered by LAKE’s
infrastructure (§7).

2 BACKGROUND
2.1 OS Kernels and ML
Monolithic kernels such as the Linux kernel, increasingly accumu-
late new features and responsibilities as technology evolves. For
example, Linux initially had a simple, greedy and time-sliced sched-
uling algorithm with a single list of tasks. Hardware evolution, e.g.
increased core count, hyper-threading, non-uniformmemory access
(NUMA) and multiple CPU sockets forced scheduling algorithms to
evolve in order to support these features. Currently, Linux’s sched-
uler has a much more complex algorithm that uses self-balancing
trees and per-core task lists, and must do complex load balancing
across cores to maintain good utilization. This constant increase in
problem dimensionality and the fact that systems can have different
features complicates the design of efficient, general solutions and
leads to heuristics that are inflexible despite the need to address a
wide variety of platforms.

The Linux kernel relies on heuristics to make important deci-
sions, such as which page to reclaim and how to balance processes
across CPUs. Heuristics are usually a cheap alternative to complex,
computationally intensive and sometimes impractical (e.g. NP-hard
problems) solutions. The goal of a heuristic is to get a good enough
(local minima or maxima) solution quickly, instead of spending
too much time exploring the solution space for an optimal one.
Heuristics used by the kernel are a one-size-fits-all approach, aim-
ing towards average cases. For example, an I/O intensive server
and a compute-intensive server that use the same kernel version,
will both use the same heuristics; by specializing decisions to each
server’s workload, performance could be improved [34, 38, 46, 62].
Machine learning is a possible alternative to such fixed heuristics.
In file system prefetching, for example, Leap [57] showed that ap-
plications have high variation in file access patterns, causing fixed
pattern-finding algorithms to perform poorly in many cases. Ma-
chine learning can be applied to file system prefetching [11, 15, 50]
to improve the shortcomings of heuristics. This can be achieved by
learning file accesses pattern online, during execution, and training
custom models.

2.2 Accelerators
Specialized accelerators are proliferating: tens of new specific-
purpose accelerators and frameworks [85] emerge every year to
boost the performance and efficiency of compute-intensive work-
loads. Deep learning accelerators such as GraphCore IPU [5] and

847

Towards a Machine Learning-Assisted Kernel with LAKE ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

Google TPU [37] can provide 50× more energy-efficiency than
CPUs. Near-data computing and analytics e.g. smartSSDs [39] of-
fload data plane operations to devices, as internal disk bandwidth
is much higher than bus bandwidth. General-purpose accelerators
like GPUs are widely used in ML, bioinformatics, cryptocurrency,
etc [25, 47, 61, 66, 72].

However, current software and system support for accelerators
is limited to user-mode programs. Accelerators ship with user li-
braries and kernel drivers whose interfaces and implementation
are proprietary. Although many accelerator virtualization tech-
niques [3, 21, 29, 67, 69, 78, 81, 85] exist (e.g. fixed and mediated
pass-through, API remoting) that can provide applications with
a virtual GPU, no existing solutions can be used by kernel space
applications out of the box.

3 MOTIVATION
Our experience adding ML models to OS kernels motivates us
to design infrastructure that simplifies integration and empowers
developers to use potentially computationally expensive algorithms.
Common infrastructure that can be used by current and future
general applications is urgently needed to avoid proliferation of
ad-hoc, application-specific solutions. A key challenge is collecting
feature data needed by inference, which may require interrogating
kernel data structures at different abstracting layers, in different
modules with different locking disciplines. We propose an API
design to meet this challenge in §5. We also find that accelerators
(e.g. GPUs) are vital. Their massive parallelism and high throughput
enable more complex and accurate models; CPUs alone are often
unable able to meet performance requirements [36].

Unfortunately, accelerator stacks do not, in general, expose ker-
nel space APIs, and typically rely on kernel-bypass designs that fac-
tor proprietary high-level API support into user space [85]. Hence,
previous kernel acceleration systems [14, 31, 53, 68, 73–75] have
used hand-built up-calls to enable OS-level interaction with accel-
erators. General accelerator virtualization techniques, such as API
remoting [3, 21, 29, 69, 78, 81, 85] are not sufficient; communication
transports used by such systems are either not available or not
efficient for data transfer between kernel and user space.

Exposing accelerators to kernel space reveals opportunities and
challenges unique to the OS and ML setting. The key challenges
unique to this setting include managing contention for accelerators
between kernel and user space applications and reducing unneces-
sary data movement across the user-kernel boundary, and enabling
kernel subsystems to modulate between CPUs and accelerators ac-
cording to performance and accuracy profitability.
Contention and Performance Variability. Kernel MLwork can
contend with user space work for access to accelerator devices and,
unlike cross-user space process contention, no clear mechanism is
present to manage that contention. Moreover, acceleration must
amortize data transfer costs to be performance profitable, which
requires batching of inputs that may be at odds with latency goals
of the kernel. Both of these resource management challenges are
new to the OS, but the OS has a fallback alternative to use the CPU.

Performance-critical user applications need stable, dependable
access to specialized hardware in order to meet strict deadlines.
Unmitigated contention for accelerators between user and kernel

space can undermine those performance and QoS goals. Figure 1
demonstrates performance pathologies induced by contentionwhen
a GPU is shared between an ML-assisted kernel and a compute-
bound user process. The user space process is computing data
hashes while the kernel uses the GPU to accelerate page warmth
classification and I/O latency prediction. As the Contended and
Moving Average lines show, contention between kernel- and user
space heavily impacts quality-of-service. Application throughput
significantly degrades and destabilizes, decreasing by up to 68%.

0 2 4 6 8 10

Time (s)

0.50

0.75

1.00

1.25

1.50

1.75

2.00

T
h

ro
u

gh
p

u
t

(P
ag

es
p

er
S

ec
on

d
) ×107

T0

T1

T2

Uncontended Contended Moving Average

Figure 1: Throughput of a GPU-accelerated user space appli-
cation which hashes pages, with and without kernel space
contention for GPU compute resources. AtT 0, the user space
application starts using the GPU. AtT 1, the kernel space ML
page warmth classifier starts contending for GPU. AtT 2, the
kernel space ML I/O latency predictor starts contending for
GPU. The user-space sees a performance drop of up to 68%.

Datamovement. Invocation of user space APIs from kernel space
(usually done through upcalls) requires data marshalling and copy-
ing from the source context into a user space process, and copying
results and modified buffers back after completion. This can result
in redundant data transfer across the user-kernel boundary and un-
necessary synchronization with heavy performance penalties (§6).
Because no kernel-level interface to transfer data to the accelerator
is present, kernel-level data buffers must first be copied into user
space before being copied to/from the accelerator using APIs such
as cudaMemcpy. Smart combination of kernel mechanisms allows
automatic data marshalling and elimination of double buffering for
data transfers across the user-kernel boundary.

3.1 Discussion
Why not use accelerators’ interfaces directly? While direct
support for kernel-level accelerator APIs is possible, frequently-
changing internal interfaces and lack of publicly available docu-
mentation makes reverse-engineering portions of the accelerator
software stack impractical. The opaque nature of accelerator soft-
ware stacks requires that hardware vendors expose kernel-level
APIs themselves. Although NVIDIA recently open-sourced part of
its drivers [7], the driver does not expose the necessary high-level
APIs to the kernel. We additionally find that ML support is often
better served by higher level APIs such as TensorFlow (§7), so more
general support for upcalls is necessary.

848

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Henrique Fingler, Isha Tarte, Hangchen Yu, Ariel Szekely, Bodun Hu, Aditya Akella, and Christopher J. Rossbach

Could devices manage contention directly? Hardware ven-
dors have shown their willingness to enable some contention man-
agement in hardware. A select number of accelerators are Single-
Root IO Virtualization (SR-IOV) enabled, and some devices such
as SmartNICs and SmartSSDs provide APIs for coarse-grained con-
tention management and rate limiting, or allow developers to ex-
press their own policies. However, hardware-based solutions tend
to be inflexible. OS kernel developers may wish to select between
different contention management policies dynamically. Complex
and evolving contention management policies are more easily ex-
pressed in software, and our experience is that not every accelerator
will support fine-grained contention management policies in hard-
ware. ML requires additional policy support to deal with variable
performance profitability that contention management alone does
not solve.
Is isolation impacted? OS kernels use address space isolation as
their primary memory protection mechanism. We rely on the same
mechanism to isolate memory when offloading OS kernel computa-
tion to accelerators. In our experience all accelerators support some
type of address space isolation. While any approach which offloads
OS kernel data to accelerators may expose new side-channels, we
leave investigation of side-channel mitigation to future work.

4 KERNEL ACCELERATIONWITH LAKE
To allow complex, accelerator-dependent machine learning algo-
rithms to be used in the kernel, LAKE must provide infrastructure
that allows for future and current kernel space applications to use
accelerators. This is not currently possible because libraries sup-
plied by accelerators’ vendors are designed for user space. At the
core of enabling accelerator access to kernel space in LAKE is an API
remoting system that exposes arbitrary APIs to kernel subsystems.
APIs exposed by LAKE are executed, through upcalls, by a process in
user space. Figure 2 shows the design of LAKE. We consider a system
with Linux as the host OS and at least one accelerator. Although this
work focuses on NVIDIA GPUs and CUDA, there is no fundamental
issue preventing it to be extended to other accelerators [85].

There are three main components in LAKE: the kernel-side API
provider (lakeLib), the bulk data kernel-user communication chan-
nel (lakeShm) and the user side daemon process that realized APIs,
lakeD. lakeLib is a kernel module that exposes APIs as such as the
vendor’s user space library of an accelerator as symbols to kernel
space. This module has a function with the same name API it wants
to support in kernel space. For example, to support the cuMemAlloc
CUDA API in kernel space, we must have a function with the same
name in lakeLib. Each of these functions in lakeLib does three things:
serialize an API identifier and all of API parameters into a com-
mand, transmit commands through some communication channel
for remote execution in user space and, finally, wait for a response.

The lakeD is a user space daemon that listens for commands
coming from lakeLib, deserializes them and executes the requested
APIs. This daemon must have access to the vendor’s library (e.g.
cudart.so) to realize APIs requested by lakeLib. Continuing the
example of the cuMemAllocAPI, a command for such API includes a
field that identifies which API is to executed and its parameters: how
many bytes to allocate and a pointer to store the starting address
of the new allocation. lakeD deserializes the command to obtain

these fields, executes the API using the vendor’s original library
and sends back, through the same channel the initial command
came from, the results: the return code and the pointer returned by
the API call.

Lastly, lakeShm is a kernel module that provides memory alloca-
tions to lakeLib and LAKE-powered applications. Memory allocated
through lakeShm’s APIs are optimized for data transfers between
kernel space applications and the user space lakeD. lakeShm works
by requesting and mapping a large contiguous memory region from
the Linux kernel. When lakeD is started, the same region is mapped
to its process. While host-to-device transfer is still required, this
allows for zero-copy memory movement between kernel space
modules and lakeD.

user space
kernel space

Accelerator Library

Accelerator DriverlakeLib lakeShm

LAKE-powered
kernel applications

lakeD
command

channel
shared
memory

Users’ applications

Hardware

Vendor-provided
accelerator APIs

Internal LAKE
communication

LAKE-provided
accelerator APIs

Figure 2: Overview of the architecture of LAKE.

4.1 SystemWorkflow
When a kernel space application calls an API provided by LAKE, a
series of mechanisms are activated until it is finally handled by the
accelerator. This workflow includes two boundary crossings: from
kernel to user and from user to kernel space. Let’s consider a simple
application that allocates memory locally and on the GPU, copies
local data to the GPU and invokes a kernel to do some computation
on the GPU. All applications we study exercise these steps.

We classify the operations an application that uses LAKE can
do into three categories: local operations, API-remoted opera-
tions and copiable memory allocations.
Local operations : these operations include existing kernel func-
tions and memory allocations in kernel space. Such operations do
not require remoting and are not modified by LAKE. For example,
regular memory allocations can be satisfied by calls to the kernel’s
memory allocator, e.g. vmalloc.
API-remoted operations : LAKE provides the accelerator API to
kernel space through lakeLib. When the application calls an ac-
celerator API, the execution flow switches to the lakeLib module.
The buffer for a command large enough to hold the API function
identifier (e.g. a number) and all function arguments is created. This
command is then sent to lakeD through a socket-like channel. Once
in user space, the command is deserialized and the API requested is
executed on the accelerator. When completed, a return command
is built with the return value and sent back. Errors caused when
executing an API are forwarded to the application, which must do
its own error checking.
Copiable memory allocations : memory regions used by appli-
cations that will be copied to/from accelerators, should be allocated

849

Towards a Machine Learning-Assisted Kernel with LAKE ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

using lakeShm, which provides a function similar to malloc. Mem-
ory regions allocated by lakeShm are shared, avoiding memory
copies between kernel and user space. Using lakeShm does not, by
itself, yield zero-copy data transfers between the kernel space appli-
cation and the accelerator. The CUDA API, for example, has a user
space API (cudaMallocHost) that provides zero-copy transfer from
user space to GPU, but LAKE can not integrate this feature since
the CUDA runtime library is closed source. For custom high-level
APIs provided by LAKE (discussed in §4.4), where kernel space ap-
plications call APIs at a much higher level than allocating memory
on an accelerator, lakeShm removes the only data copying under
its domain. API remoting will still work if applications do not user
lakeShm neither accelerator-specific APIs that reduce data transfers;
this will just cause extra data copies.

4.2 Modulating Accelerator Use
Profitability of using an accelerator is not always guaranteed as we
show in §7; accelerators’ massive parallelism are only advantageous
when processing large amounts of data. Accelerators are almost
ubiquitous in ML training due its batch processing, but the same
is not true for inference. Inference on small batches of inputs is
usually faster on CPUs. Typically, there exists a batch size in which
accelerators yield better performance (we call this the crossover
point).

To provide kernel ML applications with the best performance,
LAKE allows on-the-fly switch between execution on CPU and accel-
erator, at the function call granularity. This is done through custom
execution policies (an example is given in §4.3). LAKE allows devel-
opers to write and install such policies using eBPF [4]. Through
callbacks, developers can specify the necessary requirements to
consider utilizing an accelerator profitable. The policy is executed
automatically by the kernel during the application’s execution. Fig-
ure 3 shows the pseudocode of a simple policy for CUDA devices
that manages variable profitability by falling back to the CPU for
batch sizes under a certain threshold.

4.3 Contention Management
We cannot assume that accelerators provided by LAKE will be ex-
clusive to the kernel. User space applications expect performance
guarantees from accelerators, and we can not tolerate performance
interfere. When the accelerator becomes a contended resource, ker-
nel space applications must reduce or completely stop using the
accelerator and fall back to either a simpler, less intensive accelera-
tor implementation or a CPU implementation.

The same policy used for modulating accelerator utilization can
be used to manage contention. A policy’s toolset includes any OS-
or vendor-provided utilities (e.g. NVIDIA’s NVML API, supported by
LAKE), allowing fine-grained information about the current state of
the system. Figure 3 shows the pseudocode of a simple contention
policy for CUDA devices. The policy rate-limits the query of GPU
utilization and using a moving average to keep kernel consump-
tion of GPU compute under a threshold. The developer can specify
the policy with two callback functions: the dev_func callback usu-
ally contains one or more cuLaunchKernel invocations, and the

1 policy cu_policy(offload_func_t dev_func , void

*dev_args , offload_func_t cpu_func , void *
cpu_args) {

2 static nvmlUtilization_t util;

3 if ...5 ms elapsed since last check...

4 // LAKE -remoted nvml API

5 nvmlGetUtilization(dev , &util)

6 // compute GPU utilization moving average

7 int exec_rate = mov_avg(util.gpu);

8 // batch size for profitability threshold

9 int batch_sz = get_batch_size(def_args)

10 if (exec_rate < exec_threshold

11 && batch_sz >= batch_threshold)

12 return dev_func(dev_args);

13 else

14 return cpu_func(dev_args); }

Figure 3: An outline of a policy for CUDA devices that uses
moving average tomanage contention and a batch threshold
to use HWacceleration only for batches big enough to enjoy
performance benefit.

cpu_func can contain alternative APIs that perform the same com-
putations, but may operate on the CPU or use fewer accelerator
resources.

4.4 High-Level APIs
The simplicity of existing machine learning libraries such as Tensor-
flow [10], which abstracts complex machine learning functionality
into high-level APIs, discourage applications from using the CUDA
runtime API directly. Although possible, we can not force devel-
opers to implement complex and hard-to-optimize algorithms in
CUDA. At the same time, porting enormous libraries like Tensor-
flow to the kernel is impractical; these libraries rely on user space
exclusive libraries and have substantial size. Enabling and facilitat-
ing the use of machine learning by the kernel is one of the main
objective of LAKE, so we must provide mechanisms for applications
to use high-level libraries.

LAKE’s API remoting system is sufficiently general that it can
support manual addition of APIs. This is required to allow kernel
space applications to use higher-level APIs without porting them to
kernel space. For example, our page warmth predictor(§ 7.2) is based
off of Kleio [19], which uses Tensorflow to construct a model with
two LSTM layers. While constructing a model is not hard, imple-
menting fast, efficient and correct LSTM inference using the CUDA
runtime directly is [8]. Providing high-level APIs to the kernel space
requires two things: adding the function’s prototype in lakeLib and
implementing its functionality in lakeD. Manual addition of APIs
requires developers to design data conversion between raw data in
kernel to the libraries’ expectation. For example, if NumPy arrays
are used as input to TensorFlow, something not available in kernel,
the data must be sent in some format (e.g. arrays of numbers) and
converted in the lakeD. Automatic data serialization between kernel
and user space is provided by LAKE.

850

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Henrique Fingler, Isha Tarte, Hangchen Yu, Ariel Szekely, Bodun Hu, Aditya Akella, and Christopher J. Rossbach

Table 1: The LAKE feature registry API.

API Description
create_registry(name, sys, schema, window) Creates feature registry with capacity
destroy_registry(name, sys) Destroys a feature registry

create_model(name, sys, path) Create a new ML model, saved at path
update_model(name, sys, path) Commit a changed model to the file system
load_model(name, sys, path) Load a model from path into memory
delete_model(name, sys, path) Delete a model from the file system and memory
register_classifier(name, sys, fn, arch) Provide a function pointer for classifiers/inference

Note: arch specifies CPU / GPU / XPU
register_policy(name, sys, fn) Provide an eBPF policy for contention/batching (§4.3)

score_features(name, sys, fvs, num) Run inference on a batch, return batch results
get_features(name, sys, ts) Batch retrieves all feature vectors older than ts

begin_fv_capture(name, sys, ts) Starts the creation of a new feature vector.
Subsequent calls to capture_feature for name/subsystem
will add/overwrite the current value of that feature

capture_feature(name, sys, key, val, sz) Sets feature with key, val on the current vector
capture_feature_incr(name, sys, key, incrval, sz) Update a feature with key by incrementing
commit_fv_capture(name, sys, ts) Commits the current feature vector to the registry.
truncate_features(name, sys, ts) Removes all feature vectors older than ts

5 IN-KERNEL FEATURE REGISTRY
LAKE supports in kernel feature registry to manage ML models and
feature vector capture, whose API is shown in Table 1. The design
goals of the API are 1) to minimize the performance impact of ML-
related functionality, 2) enable simple, potentially asynchronous
feature vector capture in the presence of abstraction and module
boundaries and anticipate the needs of multithreaded code (e.g.
do the relevant data structures need to be interrogated with locks
held, or in interrupt context?) and 3) simplify the task of invoking
inference on batches of feature vectors. Generally speaking, the
API provides a handful of functions for managing registries (named
combinations of a model, with an accompanying feature vector
schema, associated with kernel subsystems), managing ML models,
capturing features, and invoking classifiers/inference.

5.1 Design for Performance
The API meets the first goal (minimal overhead) by operating in-
kernel and using careful data structure and API design. ML models
are committed to the file system and loaded into memory at boot
time. Loading and update are infrequent, so file system overheads
are acceptable, but at inference time, having the model in memory
is critical to performance. Feature vectors are stored in memory
in a circular buffer sized according to the window parameter spec-
ified, and in general have the format <numfeatures, kvpair*,
ts_begin, ts_end>. The kvpair* is a key-value map from feature
keys to values supported by a lock-free hash table. We considered
supporting the feature registry in user-space to avoid introducing
sensitive code in the kernel, but ultimately decided that kernel
crossings for feature capture and for accessing models for inference
would put too much overhead on the critical path.

5.2 Schema
Each registry has a schema, which describes the format of feature
vectors: concretely the schema is a map from feature key (name) to
a tuple of <size, entries>, where size is the number of bytes
required by the feature type (e.g. 4 bytes for an int), and entries
provides array support for feature vectors that include historical
values. LAKE avoids tracking the actual value type for feature vector
entries, and instead provides the necessary capacity and treats
values as untyped bytes. For most features types, e.g. an integer
value, entries is 1, meaning the vector includes a single scalar
value. When entries is greater than 1, the feature is an array
of length entries where the entry at index 0 is the most recent
sample, and the entries at indices 1..(N−1) are the historical samples
from the last N − 1 feature vectors. We find features that comprise
the last N measurements of a particular value common enough
that providing API-level support for the idiom is a worthwhile
simplification. An example of the idiom is illustrated in the case
study below (§5.5).

5.3 Asynchrony and Module Boundaries
To understand design goal 2 above, consider that synchronous fea-
ture capture (interrogating relevant data structures just before in-
voking inference) can be impractical because module boundaries
and locking disciplines can make access to widely dispersed data
impractical. LAKE addresses this with an asynchronous API that
allows programmers to place simple calls at the code sites where
instrumented data are already maintained, building up feature vec-
tors over time. The register relies on lock-free data structures to
enable instrumentation calls on arbitrary kernel threads without
needing additional locking disciplines. The API supports an id-
iom where feature capture opened (calling begin_fv_capture()):
while feature capture is open, individual feature vector values may

851

Towards a Machine Learning-Assisted Kernel with LAKE ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

be captured on any thread using capture_feature() which up-
dates the value at the given key in the feature map (kvpair). We
find there are situations that are significantly simplified for the
kernel developer with support for incremental updates for feature
values with capture_feature_incr() (see example below: §5.5).
Creation of a new feature vector sets a begin timestamp (ts_begin),
while capture is finalized by committing which sets an end times-
tamp (ts_end).

5.4 Simplifying Batch Management
Because performance-accuracy profitability of ML is variable, we
find that explicit control over batch size is a key parameter to expose
to the kernel developer to modulate the use of accelerators. Query-
ing the registry with a timestamp ts (get_features()) returns the first
feature vector with for which ts_begin <= ts <= ts_end. Query-
ing with a null timestamp returns a batch containing all the features
in the circular buffer. The API can acknowledge consumption of
that batch by calling truncate_features(). When the schema for
a registry has features that rely on historical samples (entries >
1 above), LAKE will always preserve the most recent feature vec-
tor on truncation to enable the system to correctly populate those
feature values. The score_features() API invokes a programmer
defined callback (specified with register_classifier()) to run
inference. The policy function specified with register_policy()
(§4.3) is invoked by the framework to manage accelerator use.

5.5 Feature Registry Case Study
Predicting I/O latency in systems with parallel and redundant stor-
age (e.g. RAID) can improve throughput by rejecting high latency
I/Os and re-issuing the same I/O to a different device [32]. We
measure this workload in §7 but use it here to illustrate use of
the feature registry API. Capturing I/O latency-related features
requires inserting code at I/O’s boundaries, at code locations that
are different from where inference is invoked, making support for
asynchronous feature construction necessary. Inference is invoked
at I/O issue and the system classifies it as fast or slow based on a
feature vector that includes the number of pending I/Os and the
completion latency of a fixed number of previous I/Os.

Capturing the number of pending I/Os and latency of an I/O
requires developers to insert code on both I/O issue and completion.
Listing 4 shows pseudocode added to the generic_make_request_
checks function, which is called on I/O issue, in order to capture
the current state of the system as a feature vector. We store the
time this I/O was issued (required to calculate latency), increase the
number of pending I/Os in the current feature vector and commit
the current state as a feature vector. Then, if either a pre-defined
time quantum has passed or we reach a desired batch sized, we
retrieve a batch from the registry, perform batch inference, act on
the results per I/O, and clear the feature registry ring. Features must
also be captured on I/O completion. Listing 5 shows pseudocode
added to the bio_endio function, which computes how long the
current I/O took to complete, decreases the amount of pending I/Os
by one and updates the current feature vector.

Latency prediction has clear asynchrony in feature construc-
tion, and feature values may be captured conveniently on different

threads. I/Os can be handled concurrently by the kernel, and man-
ual state management and construction of a feature vector requires
careful concurrency control. LAKE’s feature registry eases these
issues.

1 // called when issuing a block I/O in Linux

2 generic_make_request_checks(struct bio *bio)
3 {

4 sys = "bio_latency_prediction"

5 // store this I/O's start time

6 getnstimeofday (&(bio ->io_start_ts));

7 // increment pending I/Os on this device

8 capture_feature_incr(dev ,sys ,"pend_ios" ,1)

9 // this I/O becomes a feature vector

10 commit_feature_capture(dev , sys , now())

11 if(quantum passed or batch > thresh) {

12 // get all features vectors in the ring

13 fvs = get_features(dev , sys , NULL)

14 // do inference on all feature vecs

15 scores = score_features(dev , sys , fvs);

16 // reject , re-issue or accept I/Os

17 ...take action based on scores...

18 // reset the feature vector ring

19 truncate_features(dev , sys , NULL)

20 }

21 //start new feature

22 begin_fv_capture(dev , sys , now())

23 ...

Figure 4: Pseudocode of I/O issue code to use LAKE feature reg-
istry for I/O latency prediction. Each block device needs its
own feature registry (name parameter is the device’s name,
e.g. sda1).

1 // function called to end a block I/O

2 void bio_endio(struct bio *bio) {

3 sys = "bio_latency_prediction"

4 // get latency of this I/O

5 lat = get_io_latency(bio ->io_start_ts);

6 // store this I/O's latency

7 capture_feature(dev ,sys ,io_latencies ,lat);

8 // one less pending I/O on this device

9 capture_feature_incr(dev ,sys ,pend_ios ,-1)

10 ...

Figure 5: Pseudocode of I/O completion code using LAKE fea-
ture registry for I/O latency prediction.

6 IMPLEMENTATION
Our LAKE prototype is based on Linux kernel version 6.0. Floating
point operations, required by machine learning algorithms, are
not supported in the kernel by default. Code regions that need to
use floating points must be wrapped with macros that enable it
(kernel_fpu_begin and kernel_fpu_end).

852

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Henrique Fingler, Isha Tarte, Hangchen Yu, Ariel Szekely, Bodun Hu, Aditya Akella, and Christopher J. Rossbach

The LAKE API remoting system provides kernel space with the
CUDA driver API version 11.0 as well as TensorFlow 2.4.0 and Keras
2.2.5.

The implementation of LAKE’s API remoting system resembles
an RPC system: lakeLib exports symbols (stubs) to the kernel and
lakeD is the user space process that handles incoming requests.
Commands sent between these two are transmitted through Netlink
sockets due to their low latency. Larger memory transfers are done
through a zero-copy shared memory mechanism.
Communication Channel. LAKE requires efficient communica-
tion channels as applications can be call- or latency sensitive. Linux
provides mechanisms for kernel-user communications, such as
ioctl, system calls, signals, up-call, mmap, and sockets. We evaluate
the alternatives in Table 2, which summarizes call time and latency
to send a doorbell from kernel to user space. All mechanisms except
mmap have similar latency, while device read/write and Netlink
have additional caching or queuing layers. The mmap method is
fastest but wastes CPU spinning, so we use Netlink sockets.

Table 2: Average call time and latency to send a doorbellmes-
sage from kernel to user.

Signal Device R/W Netlink Mmap
Call time (µs) 56 6 11 6
Latency (µs) 56 57 54 6

Mapped Memory. Bulk data transfers between kernel and user
space are done through lakeShm, lakeShm reserves a contiguous
DMA region at load time through dma_alloc_coherent. A best-fit
based memory allocator algorithm is used. Using mapped mem-
ory avoids transferring large data buffers across the kernel-user
boundary. Figure 6 shows the round-trip transfer cost of varying
sized messages. Transferring larger messages causes large overhead,
which can be eliminated by lakeShm.

128 256 512 1K 2K 4K 8K 16K 32K

Command Size (Bytes)

0

100

200

300

T
im

e
(µ

s)

28.37 30.82 31.98 31.77 30.65 33.16
67.80

127.79

256.88

Figure 6: Overhead of sending Netlinkmessages of different
sizes.

6.1 Discussion: Security Implications
LAKE introduces a user-space component to expose accelerators
to user space, moving data that is private to the kernel through
user space. In LAKE, the user-space daemon is a trusted process,
which runs as root, similar to any other user-space daemon that
integrates tightly with the kernel (e.g. user-space memory man-
agers, schedulers, and file systems typical of micro-kernels, and

user-mode device drivers that are prevalent in modern OSes such
as Windows). Address-space separation provides strong security
guarantees against leakage, despite the fact that the daemon does
not execute in kernel mode. Nonetheless, for additional assurance,
the user space daemon (lakeD) could be sandboxed and seccomp
could be used. The lakeD daemon’s interface with the OS is quite
limited (it requires ioctl and mmap for lakeShm, netlink sockets
for lakeLib and the syscalls done by the CUDA runtime). While we
do not consider side-channels in this work, lakeD could be extended
to use secure GPU TEEs like Graviton[79] or Telekine[35].

6.2 Source Code
In total, lakeLib, lakeShm (both kernel space code) and lakeD (user
space code) consists of approximately 817, 826 and 1072 lines of
C/C++ code, respectively, with an extra 769 lines of code for core
common functionality. Our neural network for predicting I/O la-
tency and its tooling consists of approximately 4157 lines of code.
The other workloads and the modified eCryptfs consists of 1400 and
2925 lines of code, respectively. LAKE is open-source under GPLv3
and is available on GitHub at utcs-scea/LAKE.

7 EVALUATION
We identified several applications in kernel space that are candidates
for ML-decisioning and HW-acceleration. We implemented GPU-
accelerated versions of them using CUDA and LAKE (Table 3). This
section describes each application and analyzes accelerator prof-
itability. Data required by each application can usually be copied
to the GPU asynchronously, before its execution. Thus, for some
applications, we report execution time with (shown in figures as
“LAKE (sync.)”) and without synchronous data movement (shown
as “LAKE”).
Evaluation Scenarios. The benefits of ML on decision quality
have been demonstrated in existing literature for all workloads. To
validate that those benefits remain in the presence of hardware
acceleration and components introduced by LAKE, we perform an
end-to-end case study on I/O Latency Prediction, revisiting previous
work [32] on more recent hardware, demonstrating additional ben-
efits made possible with acceleration, and characterizing the impact
of hardware evolution on ML profitability (§7.1). The remainder of
this section evaluates the ability of our infrastructure to provide
access to acceleration, make ML decisioning more performant, help
manage contention, and simplify manage the variable profitability
of acceleration (§7.2–§7.5).
Testbed. All of our evaluation was done on a server with two
16-core Intel Xeon Gold 6226R CPUs, 376 GiB DDR4 RAM, two
NVIDIA A100 GPUs and three Samsung 980 Pro 1TB (PCIe 4.0)
NVMes. We used Ubuntu 22.04 with our modified Linux kernel
based on version 6.0.

7.1 End-to-end Study: I/O Latency Prediction
Predictable latency can be very useful for data-center systems serv-
ing interactive applications such as messaging and search [17].
Being able to infer SSD performance at a very fine-grained level, i.e.
per I/O, can help these applications achieve performance predictabil-
ity. If a system predicts an I/O will be slow, the latency penalty can

853

https://github.com/utcs-scea/LAKE

Towards a Machine Learning-Assisted Kernel with LAKE ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

Table 3: Identified applications in kernel space that are candidates for GPU acceleration. Crossover point is the number of
inputs (block size for file system encryption) in a batch in which using a GPU becomes profitable.

Application Description ML Algorithm Crossover API Inference Frequency
I/O Latency Prediction Predict I/O latencies in storage systems Neural Network 8 CUDA Fine grained
Page Warmth Predict pages hotness to keep in fast memory LSTM 1 High level Coarse grained
Load Balancing Predict benefit of task-stealing between CPUs Neural Network 256 CUDA Fine grained
Filesystem Prefetching Predict next I/O accesses for better read-ahead Neural Network 64 CUDA Coarse grained
Malware Detection Detect malware/attacks k-NN 128 CUDA Coarse grained

Filesystem Encryption Encrypt/Decrypt data to/from storage - 16/128KB CUDA Fine grained

Table 4: Characteristics of our generated traces based on the
traces of LinnOS [32], rerated to double the IOPS.

Trace
Name

Avg
IOPS

Avg Read/Write
I/O size (KB)

Min/Max Arrival
Time (us)

Azure 26k 30/19 0/324
Bing-I 4.8k 73/59 0/1.8k
Cosmos 2.5k 657/609 0/1.6k

be mitigated by issuing a duplicate I/O request to another storage
node [32].

LinnOS [32] shows how an OS can learn and infer per I/O latency
using a neural network. In the original paper, LinnOS improves
the average I/O latencies by up to 79.6% and its model presents an
accuracy of up to 97%. LinnOS classifies I/Os into slow or fast, using
a threshold based on the system’s state, e.g. number of pending
I/Os and latency of most recently served I/Os.

To validate previous findings of ML benefit in an end-to-end
setting with GPU acceleration, we port LinnOS’s CPU-only neural
network to a LAKE-powered kernel module that uses CUDA. We
integrate LinnOS’s [32] model into the LAKE kernel and evaluate
the original model, as well as more complex models’ benefits on our
system. The traces used by LinnOS are not available publicly, so we
generate traces with similar characteristics based on parameters
presented in the paper, using an exponential distribution for inter-
arrival time, a lognormal distribution for I/O size and a uniform
distribution for I/O offset. The original work adopted a technique
of “rerating” traces by reducing inter-arrival time to stress storage
devices with different latency characteristics. Since NVMe tech-
nology has improved since LinnOS was published, we adopt the
same technique, additionally amplifying I/O pressure. We rerate
the traces presented as enterprise-level in the original work by dou-
bling the average IOPS of the traces with smaller I/O sizes: Azure
and Bing-I. The Cosmos trace was not rerated as it was already
sufficiently demanding.

We find that the benefits of reissuing a read I/O to another device
if the I/O is predicted as slow is highly dependent on the workload’s
characteristics and the testbed. For example, our (more recent)
NVMe devices can exhibit read latencies up to three times lower
than the original work’s enterprise grade SSDs, use the PCIe 4.0
interface instead of PCI 3.0 and feature much larger DRAM caches.
Larger caches absorb much more of the load, particularly for small

I/Os, so the devices do not exhibit significant I/O read latency
variance.

Workloads matching the characteristics of traces reported by
LinnOS do not stress the NVMes and its caches, and the cost of run-
ning a neural network degrades average read latencies regardless of
whether GPUs or CPUs are used. Consequently, for the workloads
reported in the original paper, there is no benefit in rerouting I/Os.
Table 4 shows the I/O properties of each trace. We report measure-
ments for replaying the same trace on each NVMe (the workloads
of the original work) and a mixed workload, which replays different
traces on different NVMes. Our mixed workload replays each trace
with a different default target NVMe, and reissues slow I/Os in
round-robin fashion. We rerate all traces to three times their IOPS
and combine these into a more intense mixed workload.

The neural network used by LinnOS is small: it contains two
layers with 256 and 2 neurons, respectively. Maintaining low CPU
utilization and low inference latency is the primary purpose of using
such a simple model. We evaluate LAKE using this model, as well as
more complexmodels with one and two additional layers to evaluate
LAKE’s ability to support richer, more accurate models based on
acceleration. The added layers added have the same number of
neurons as the first one. We suffix these implementations with +1
and +2. These implementations have three layers with [256,256,2]
neurons and four layers with [256,256,256,2] neurons, respectively.

For each workload, we evaluate the average read latency of the
kernel’s default behavior (baseline, no I/O rerouting), LinnOS’s
model using a CPU, and LAKE, which targets a CPU or a GPU
based on a policy that chooses according to dynamic batch size
and average I/O inter-arrival time. We additionally report average
read latencies when LinnOS or LAKE use our augmented models.
Figure 7 shows the results. We find that for mixed workloads that
stress the devices in dissimilar ways, both LinnOS and LAKE provide
lower average latency than the baseline. The benefits of ML are
preserved using LAKE for GPU acceleration. Using the simple model,
the benefit of LAKE is lower relative to LinnOS execution due to
latency overheads for dynamic batch formation and data transfer.
LAKE performs better with high IOPS workloads like Azure due to
increased batching. As model complexity increases, we find that
offload to a GPU becomes performance profitable relative to a CPU
for all cases.

Our experience with I/O latency prediction underscores our
findings reported earlier: the benefit of ML is sensitive to a number
of factors including workload, subsystem, and hardware. LAKE’s
framework is effective for using GPUs only when they will be

854

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Henrique Fingler, Isha Tarte, Hangchen Yu, Ariel Szekely, Bodun Hu, Aditya Akella, and Christopher J. Rossbach

Azure* Cosmos* Bing-I* Mixed Mixed+
0

500

1000

1500

Av
er

ag
e

Re
ad

 L
at

en
cy

 (u
s) Baseline

NN cpu
NN LAKE
NN+1 cpu

NN+1 LAKE
NN+2 cpu
NN+2 LAKE

Figure 7: Average latency of our workloads without I/O rerouting (baseline), rerouting through neural networks using cpu,
and neural networks using a GPU through LAKE. The suffixes +1 and +2 indicate how many extra layers were added to the
original two layer neural network. *Traces were generated to reflect characteristics reported in [32].

profitable and falling back to the CPU when batch formation does
not produce sufficiently large batches. However, given that even
the original CPU-based model actually harms performance when
applications do not stress the device, some mechanism to modulate
the use of ML even on the CPU is a likely necessity. We believe
the same framework LAKE provides for managing contention and
selecting between CPU and GPU can be used to implement policies
that avoid using ML when it does not help, and will explore this in
future work.

1 2 4 8 16 32 64 128 256 512
1024

I/Os having their latency predicted

0

2

4

6

8

10

Ti
m

e
(u

s)

1e2
CPU
CPU+1

CPU+2
LAKE

LAKE+1
LAKE+2

Figure 8: I/O latency prediction time for variable batch sizes
using cpu and GPU through LAKE, including data copying la-
tencies. The suffixes +1 and +2 indicate howmany extra lay-
ers were added to the original two layer neural network.

To evaluate batch formation thresholds required for LAKE to be
performance profitable, Figure 8 shows inference time of our the
original NN and the two augmented NNs on various batch sizes
on CPU and GPU using LAKE. For the original NN, using a GPU is
profitable for batch sizes greater than 8, which is feasible in systems
with high IOPS rate. For instance, a provisioned SSD in Amazon
EBS[1] supports 256k IOPS, meaning an average inter-arrival time
of I/O requests to be 4µs. In this scenario, with a batch size of 8,
doing inference as requests arrive using a CPU would take around
120µs (each inference on CPU takes around 15µs). Instead, we can
wait for 8 requests to arrive (28µs) and do inference on a GPU

in 58µs, totaling 86µs, a reduction of 28%. For the augmented NNs,
with one and two extra layers, using a GPU is profitable for batch
sizes larger than 3 and 2, respectively. Profitability increases as
batch size increases.

7.2 Page Warmth Classification
Multi-tiered memory systems (available with up to 18TB of mem-
ory [2, 6]) combine different memory types (e.g. RAM, NVMe) to
expand capacity but face data placement challenges. Placing hot
pages (frequently accessed or soon-to-be accessed pages) in a lower
memory tier can harm performance. Cold pages stored in high-
tier memory wastes precious faster memory. The challenge for
this subsystem is to classify pages to inform where they should
be stored to optimize performance (also called page scheduling).
Recent work [43] shows several limitations in current systems exist.

ML for page scheduling is promising. Kleio [19] simulates differ-
ent page schedulers and implements a LSTM-based classifier, which
makes better decisions than a history based solution [58]. Kleio
is implemented using TensorFlow, so we port it to a kernel space
module using LAKE. Figure 9 shows the inference time for different
sized batch of inputs. We observe significant speedup when using
a GPU through LAKE instead of CPUs. There is no significant differ-
ence when running Kleio on user or kernel space, since the cost of
LAKE’s API remoting system is negligible relative to the execution
time.

7.3 Load Balancing
Imbalanced load between CPU cores can cause some CPUs to be
overloaded while others are under-utilized, hurting general system
performance. The Linux kernel does load balancing using a pull-
based, work-stealing mechanism that moves processes’ execution
between CPUs. Previous work [55] has found that the load balanc-
ing heuristic has performance-critical bugs leading to non-optimal
choices.

ML is a promising alternative. The difficulty of writing good
heuristics for load balancing is aggravated due to the amount of
possible system configuration: scheduling group organization, ap-
plication execution patterns (e.g. many short applications or few
long-running), the number of NUMA nodes and their memory dis-
tances. The predominant hardship in developing an ML algorithm

855

Towards a Machine Learning-Assisted Kernel with LAKE ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

20 80 14
0

20
0

26
0

32
0

38
0

44
0

50
0

56
0

62
0

68
0

74
0

80
0

86
0

92
0

98
0

10
40

11
00

11
60

pages being classified

1

2

3

Ti
m

e
(m

s)

1e2
LAKE
LAKE (sync.)

Figure 9: Time taken to predict page warmth through Kleio,
a LSTM-based model for variable batch sizes. Data is shown
only for LAKE (sync.) because data movement is handled
synchronously by TensorFlow.

1 2 4 8 16 32 64 128 256 512
1024

tasks being classified

0.0

0.5

1.0

1.5

2.0

Ti
m

e
(u

s)

1e2
CPU
LAKE
LAKE (sync.)

Figure 10: Time taken to predict load balancing decisions us-
ing MLLB in variable batch sizes.

for load balancing is collecting data in order to compare differ-
ent algorithm outcomes and estimate a reward to reinforce an ML
model.

MLLB [16] used a multi-layer perceptron for load balancing.
We port MLLB’s model to CUDA and place it in a kernel module
using LAKE. The inference time for variable numbers of processes
is shown in Figure 10. Using a GPU is only profitable for batches
larger than 128 inputs. Current servers with many tens of CPUs
and many processes per core can easily exceed this threshold: for
example, prior work from 2013 showed that 90% of Google servers
loaded with up to 4500 threads concurrently [86].

7.4 Filesystem Prefetching
On-demand reads from storage can be orders of magnitudes slower
than reading from memory. Prefetching blocks reduces the time
wasted waiting for device storage, and can improve application
throughput by up to 50% [70]. Linux’s fixed readahead prefetch
policy sequentially prefetches a configurable amount of data. Appli-
cations that are aware their I/Os will not be sequential can advise
the kernel not to prefetch.

Predicting non-sequential reads from an application efficiently
using heuristics is challenging. Through statistics collection from

an application’s I/O operations, ML algorithms can learn applica-
tions’ patterns and perform tailored prefetching. KML [11] uses a
pre-trained neural network to classify applications according to
I/O patterns, where each pattern has an optimal readahead config-
uration. KML improves RocksDB throughput by up to 2.3× when
using an SSD.

We port KML’s NN, originally implemented for CPUs, to a kernel
space module that uses CUDA through LAKE. Figure 11 shows the
time taken to classify a variable number of inputs. The GPU is prof-
itable more than 64 inputs are batched. We believe this model and
the file system can be expanded to classify behavior and configure
readahead per-file, as opposed to per-process.

1 2 4 8 16 32 64 128 256 512
1024

of readahead classifications

0.0

0.5

1.0

1.5

2.0

Ti
m

e
(u

s)

1e2
CPU
LAKE
LAKE (sync.)

Figure 11: Time to predict file system readahead in variable
batch sizes.

7.5 Malware Detection
Prior work [18, 22, 42, 54] can detect malicious software by an-
alyzing performance counters and system call traces using ML
classifiers. J. Demme, et al. [18] demonstrates accurate detection
of host compromise using a K-Nearest Neighbors (KNN) classifier
to achieve >90% accuracy with <10% false positive rate. G. Kim et
al. [42] use LSTM to analyze system-call traces for anomaly-based
intrusion detection with >95% accuracy at <5.5% false positive rate.
We developed a kernel driver which uses a KNN classifier to classify
user programs as malicious or benign.

Our KNN classifier operates on feature vectors which can track
syscall frequencies and PMU (Performance Monitoring Unit) coun-
ters relevant to the target malware. For example, a kernel developer
wishing to expose Spectre attacks [45] in the wild may use PMU
counters to track microarchitectural state perturbations through
cache misses, page faults, and branch mispredictions. Alternatively,
a developer who wishes to detect abuse of the syscall API may
classify processes based on how frequently they use unusual or
suspicious syscall sequences.

Figure 12 shows the average running time for performing 4,096
KNN queries on a database of 16,384 reference points. We vary
the number of features in each sample from 1 to 1024, and classify
queries based on their 16 nearest neighbors. The GPU implemen-
tation of KNN achieves about 1.5k× speedup over the sequential
CPU implementation, and the overhead of using CUDA from user
space and kernel space through LAKE is negligible: on average 4.2%
and at most 5.6%.

856

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Henrique Fingler, Isha Tarte, Hangchen Yu, Ariel Szekely, Bodun Hu, Aditya Akella, and Christopher J. Rossbach

8 16 32 64 128 256 512
1024

of query points

104

105

106

Ti
m

e
(u

s)

CPU
LAKE
LAKE (sync.)

Figure 12: Time taken to predict if a sequence of syscalls
could be from malicious software for various input sizes
(number of syscalls in feature vector) using 4096 K-Nearest
Neighbors (KNN) on a database of 16,384 reference points.

7.6 User/Kernel Contention
LAKE enables kernel space access to accelerators without degrad-
ing performance of user space processes that also use them. Fig-
ure 1 shows that contention can lead to performance degradation
and performance instability. Figure 13 demonstrates the impact
of the adaptive contention mediation policy shown in Figure 3.
Our I/O latency classifier (§ 7.1) avoids competing with user space
processes for the GPU. The policy passively monitors accelerator
utilization using accelerator APIs. As soon as the user workload
(a GPU-accelerated parallel hashing algorithm) begins to execute,
LAKE detects pressure for GPU resources, and switches execution
CPU. When the user process terminates, LAKE reclaims the GPU.

0 5 10 15 20 25 30

Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

T
h

ro
u

gh
p

u
t

T1

T2
T3

Hashing (u) I/O Latency Predictor (k)

Figure 13: Kernel and user space throughput, normalized
against peak throughput, under our adaptive contention-
averse policy. At T0, our GPU-accelerated I/O latency clas-
sifier is running. At T1, a user space process that calculates
hashes is launched. At T2, the user space process starts do-
ing hashed on the GPU. LAKE detects contention for GPU
compute resources and falls-back to CPU. At T3, the user
space process terminates. LAKE detects that the GPU is not
contended and switches execution back to the GPU.

7.7 Non-ML Acceleration Opportunities
File system Encryption. eCryptfs [30] is a cryptographic file
system that stacks on top of existing file systems and encrypts
data-at-rest. We modified eCryptfs to use AES-GCM [40] instead
of CBC because it is parallelizable. We also create a Linux crypto
API cipher that does AES-GCM encryption and decryption using a
LAKE-backed GPU.

Figure 14 shows the bandwidth of the CPU and LAKE implemen-
tations of eCryptfs. We clear all page caches and perform sequential
reads and (synchronous) writes using varying block sizes. The read-
ahead size of the disk is set to the block size, in order to fully
overlap the decryption and file system read. The LAKE-supported
eCryptfs can achieve 840 MB/s for reading, 6× higher compared
to the 142 MB/s achieved using only CPU. Similar performance
difference is observed for writing: 836 MB/s vs. 136 MB/s. The CPU
eCryptfs has near constant read and write throughput, because
the cryptographic operations become the performance bottleneck,
instead of the disk.

We measured eCryptfs with AES-NI, a CPU instruction set for
accelerated encryption and decryption.AES-NI reaches its peak of
read and write performance at around 670 MB/s and 560 MB/s, re-
spectively. The LAKE-powered eCryptfs surpasses AES-NI read per-
formance for blocks larger than 16 KB because read-ahead fetches
and decrypts more blocks than requested, creating larger decryp-
tion blocks. On the other hand, LAKE only exceeds AES-NI on write
performance for blocks larger than 128 KB. By combining LAKE and
AES-NI, doing cypher operations concurrently, we increase read
and write performance by 31% and 22%, respectively, relative to
just using a GPU through LAKE.

4K 8K 16
K

32
K

64
K

12
8K

25
6K

51
2K 1M 2M 4M

Block Size (Bytes)

250

500

750

1000

Th
ro

ug
hp

ut
 (M

B/
s)

CPU Read
CPU Write
AES-NI Read

AES-NI Write
LAKE Read
LAKE Write

GPU+AES-NI
Read
GPU+AES-NI
Write

Figure 14: I/O throughput of AES-GCM-based eCryptfs, en-
crypting/decrypting on CPU, AES-NI, and a GPU through
LAKE.

7.8 CPU Utilization
Figure 15 shows the CPU and GPU utilization of decrypting a 2 GB
file on the CPU or GPU with a 2 MB block size using the original
and our LAKE-powered eCryptfs implementation (§7.7). The CPU

857

Towards a Machine Learning-Assisted Kernel with LAKE ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Time (s)

0

20

40

60

80

100

Ut
iliz

at
io

n
(%

)

CPU
AES-NI

LAKE CPU
LAKE API

LAKE GPU

Figure 15: CPU and GPU utilization of reading a 2 GB file
sequentially on eCryptfs with a block size of 2 MB, using
CPU only, AES-NI and LAKE.

and AES-NI were measured using kernel CPU utilization. LAKE
is split into kernel CPU utilization (LAKE CPU), user space API
handler CPU utilization (LAKE API) and GPU utilization. With AES-
NI enabled, there is a short peak of utilization to decrypt all data.
LAKE consumes on average 20% of CPU resources, while the original
CPU and the AES-NI versions use 56% and 24%, respectively.

8 RELATEDWORK
Accelerator virtualization. LAKE is closely related to accelerator
virtualization through a core technique: API remoting. Previous
accelerator virtualization techniques [13, 27, 41, 48, 52, 63, 77, 78,
84], including those based on API remoting [3, 21, 25, 29, 67, 69, 81],
require enormous developer effort to virtualize a single accelerator
and its API.
Hardware acceleration in kernel. The majority of existing ker-
nel acceleration systems such as Barracuda, PacketShader and
Snap [14, 31, 53, 73–75] use up-calls to enable OS-level interac-
tion with accelerators. They copy kernel data structures into user
space for kernel bypass techniques [9, 20, 44, 64, 80]. These systems
introduce new and often workload-specific kernel APIs to access
user space acceleration services, usually with significant developer
effort. LAKE provides a common interface that these systems could
use.
Machine learning in kernel. Researchers have proposed to op-
timize or analyze kernel workloads such as process scheduling, I/O
prefetching [51, 59, 76] and others [16, 19, 26, 32, 33, 56, 65, 83]
with ML algorithms. KMLib [12] is a recent attempt to bring ML
ecosystem to operating systems, but it offers limited functionali-
ties compared to mainstream ML frameworks and no support for
accelerators.

9 CONCLUSION
We present LAKE, which gives kernel space applications access to
accelerators for ML-assisted decision-making. We identified and
evaluated five ML-based kernel space applications that can profit
from accelerators, demonstrating the ability of LAKE to provide

performant acceleration and simplify the challenge of collecting
ML features in the presence of abstraction boundaries, asynchrony,
and multi-threading.

ACKNOWLEDGMENTS
We thank the anonymous reviewers and our shepherd Hank Hoff-
mann for feedback and insightful comments and ideas that helped
us elevate and improve this paper. This work is supported in part
by NSF grants CNS-1846169, CNS-2006943, CNS-2202649, CNS-
2207317, the Texas Systems Research Consortium and the National
Nuclear Security Administration Award Number DE-NA0003969.

A ARTIFACT APPENDIX
A.1 Abstract
The artifacts of LAKE [23, 24] are, at a high-level, two pieces: our
modified Linux kernel 6.0 and the kernel modules used in our
evaluation. We provide scripts that produce graphs similar to the
ones presented in our evaluation and the data we collected on our
testbed. The basic workflow of our evaluation is: while booted in
our kernel, enable our kernel space API remoting and our user
space daemon and run each workload.

A.2 Artifact Check-List (Meta-Information)
• Program: Modified Linux kernel, source code of kernel mod-
ules, shell and python scripts.

• Run-time environment: Linux and root access are required,
we suggest Ubuntu 22.04.

• Hardware: At least one Nvidia GPU is required. The latency
prediction workload requires three storage devices.

• Execution: Basic knowledge of tmux, shell andpython scripts.
• Metrics: latency of ML inferences, latency of I/Os, resource
utilization and throughput

• Output: Output is written to kernel log. Scripts that parse the
log are provided.

• Experiments: Reproducing of our graphs using collected data.
• How much disk space required (approximately)?: 60GB.
• How much time is needed to prepare workflow (approxi-
mately)?: Three hours.

• How much time is needed to complete the experiments (ap-
proximately) ?: Five hours.

• Publicly available?: Yes.
• Code licenses (if publicly available)?: ThemodifiedLinuxker-
nel and parts of the modified eCryptfs code are licensed un-
der GPLv2. Our code is licensed under GPLv3.

• Archived?: https://doi.org/10.5281/zenodo.7277139 and https:
//doi.org/10.5281/zenodo.7277147

A.3 Description
A.3.1 How to access. Our artifacts can be found on Zenodo (link to
archive in §A.2) and GitHub. We recommend retrieving it through
GitHub since this is a continuing project. Our modified kernel is
available at utcs-scea/LAKE-linux-6.0 and our code base at utcs-
scea/LAKE.

A.3.2 Hardware dependencies. We require at least one CUDA en-
abled Nvidia GPU. Results observed may vary depending on the

858

https://doi.org/10.5281/zenodo.7277139
https://doi.org/10.5281/zenodo.7277147
https://doi.org/10.5281/zenodo.7277147
https://github.com/utcs-scea/LAKE-linux-6.0
https://github.com/utcs-scea/LAKE
https://github.com/utcs-scea/LAKE

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Henrique Fingler, Isha Tarte, Hangchen Yu, Ariel Szekely, Bodun Hu, Aditya Akella, and Christopher J. Rossbach

testbed. Our I/O latency prediction experiment requires three stor-
age devices without important data, since we do writes to arbitrary
offsets.

A.3.3 Software dependencies. We recommend Ubuntu 22.04. The
system must have a working CUDA runtime installation and Nvidia
GPU driver (installed after booting into our kernel). We require the
user to have root access.

A.4 Installation
Our artifacts contain a README.md with more detailed steps to
install our system. The setup of LAKE consists of two steps: com-
piling and installing our Linux kernel and our kernel API remoting
system.

First, clone both of our repositories: utcs-scea/LAKE-linux-6.0
and utcs-scea/LAKE. Then, the following steps should be taken:

(1) Compile, install and boot into our Linux kernel. A script that
automates this process is provided (full_compilation.sh).

(2) Add CMA argument (cma=128M@0-4G) to the kernel param-
eters.

(3) Reboot into our kernel.
(4) Install the CUDA runtime (we use version 11.7, but other

versions should work) and an Nvidia driver for the GPU. We
provide the link to download both in our README.

A.5 Experiment Workflow
To facilitate evaluating our artifacts, we provide a script that opens
a tmux session with pre created panes tmux.sh. Kernel output is
written to the kernel log. The provided tmux script will show the
kernel log on the lower left pane. The top left pane is where the
kernel API remoting system will run. The right pane(s) is where
the workloads are executed.

The crossover experiments are executed similarly: go into their
directory, build with make, run with ./run.sh, go into the ae_plot
directory and execute plot.py. This will generate the graph in pdf
format.

The eCryptfs requires building the modules (make at the src/e-
cryptfs directory) and executing an automated script (run.py at
benchmarks/ecryptfs). Before executing the script, variables inside
the script might have to be changed to set which directory and
drive the script will use.

The utilization and contention experiments follow a similar pat-
tern. Their directories are contention and utilization inside bench-
marks. Build with make and run with sudo -E python3 run.py.

The I/O prediction experiments require training, setting weights
manually by editing code, choosing and enabling a predictor mod-
ule and replaying traces so that finally data is produced. We provide
detailed instructions on how to replicate this experiment (and pre-
vious experiments) in a pdf document at the root of our repository
called ae_experiments.pdf.

A.6 Evaluation and Expected Results
We provide scripts that will plot graphs similar to ours and our col-
lected data for easier visual comparison. Raw data can be retrieved
from the kernel log.

Our work depends heavily on the tested. We do not expect the
results to be the same, but we expect they will display similar trends.

A.7 Experiment Customization
Our kernel API remoting currently supports a subset of the CUDA
driver API to kernel space. Readers are encouraged to write kernel
modules that use the CUDA API in kernel space to realize novel
ideas. We recommend our hello_driver module as a starting point.

A.8 Methodology
Submission, reviewing and badging methodology:

• https://www.acm.org/publications/policies/artifact-review-
badging

• http://cTuning.org/ae/submission-20201122.html
• http://cTuning.org/ae/reviewing-20201122.html

REFERENCES
[1] [n. d.]. Amazon EBS volume types. https://docs.aws.amazon.com/AWSEC2/

latest/UserGuide/ebs-volume-types.html. ([n. d.]).
[2] [n. d.]. Available first on Google Cloud: Intel Optane DC Persistent Memory

| Google Cloud Blog. ([n. d.]). https://cloud.google.com/blog/topics/partners/
available-first-on-google-cloud-intel-optane-dc-persistent-memory (Last ac-
cess: June, 2022).

[3] [n. d.]. Bitfusion: The Elastic AI Infrastructure for Multi-Cloud. https://bitfusion.
io. ([n. d.]). Accessed: 2019-04.

[4] [n. d.]. eBPF - Introduction, Tutorials & Community Resources. ([n. d.]). https:
//ebpf.io/ (Last access: June, 2022).

[5] [n. d.]. Graphcore: Accelerating machine learning for a world of intelligent
machines. https://www.graphcore.ai. ([n. d.]). Accessed: 2019-12.

[6] [n. d.]. Introducing new product innovations for SAP HANA, Expanded AI col-
laboration with SAP and more | Azure Blog and Updates | Microsoft Azure.
([n. d.]). https://azure.microsoft.com/en-us/blog/introducing-new-product-
innovations-for-sap-hana-expanded-ai-collaboration-with-sap-and-more/ (Last
access: June, 2022).

[7] [n. d.]. NVIDIA Releases Open-Source GPU Kernel Modules. ([n.
d.]). https://developer.nvidia.com/blog/nvidia-releases-open-source-gpu-kernel-
modules/ (Last access: June, 2022).

[8] [n. d.]. Optimizing Recurrent Neural Networks in cuDNN 5. ([n.
d.]). https://developer.nvidia.com/blog/optimizing-recurrent-neural-networks-
cudnn-5/ (Last access: May, 2022).

[9] Accessed: 2020. DPDK documentation. https://doc.dpdk.org/guides/. (Accessed:
2020).

[10] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey
Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Man-
junath Kudlur, Josh Levenberg, Rajat Monga, Sherry Moore, Derek G. Murray,
Benoit Steiner, Paul Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan
Yu, and Xiaoqiang Zheng. 2016. TensorFlow: A System for Large-Scale Machine
Learning. In Proceedings of the 12th USENIX Conference on Operating Systems
Design and Implementation (OSDI’16). USENIX Association, USA, 265–283.

[11] Ibrahim Umit Akgun, Ali Selman Aydin, Aadil Shaikh, Lukas Velikov, and Erez
Zadok. 2021. A Machine Learning Framework to Improve Storage System Perfor-
mance. In Proceedings of the 13th ACM Workshop on Hot Topics in Storage and File
Systems (HotStorage ’21). Association for Computing Machinery, New York, NY,
USA, 94–102. https://doi.org/10.1145/3465332.3470875

[12] Ibrahim Umit Akgun, Ali Selman Aydin, and Erez Zadok. 2020. KMLIB: TO-
WARDS MACHINE LEARNING FOR OPERATING SYSTEMS.

[13] Amogh Akshintala, Hangchen Yu, Arthur Peters, and Christopher J. Rossbach.
2019. Trillium: The code is the IR. In 2019 International Conference on High
Performance Computing & Simulation (HPCS). 880–889. https://doi.org/10.1109/
HPCS48598.2019.9188169

[14] André Brinkmann and Dominic Eschweiler. 2009. A microdriver architecture for
error correcting codes inside the Linux kernel. In Proceedings of the Conference
on High Performance Computing Networking, Storage and Analysis. ACM, 35.

[15] Chandranil Chakraborttii and Heiner Litz. 2020. Learning I/O Access Patterns
to Improve Prefetching in SSDs. In Machine Learning and Knowledge Discovery
in Databases: Applied Data Science Track: European Conference, ECML PKDD
2020, Ghent, Belgium, September 14-18, 2020, Proceedings, Part IV. Springer-Verlag,
Berlin, Heidelberg, 427–443. https://doi.org/10.1007/978-3-030-67667-4_26

[16] Jingde Chen, Subho S. Banerjee, Zbigniew T. Kalbarczyk, and Ravishankar K. Iyer.
2020. Machine Learning for Load Balancing in the Linux Kernel. In Proceedings of
the 11th ACM SIGOPS Asia-Pacific Workshop on Systems (APSys ’20). Association

859

https://github.com/utcs-scea/LAKE-linux-6.0
https://github.com/utcs-scea/LAKE
https://www.acm.org/publications/policies/artifact-review-badging
https://www.acm.org/publications/policies/artifact-review-badging
http://cTuning.org/ae/submission-20201122.html
http://cTuning.org/ae/reviewing-20201122.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ebs-volume-types.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ebs-volume-types.html
https://cloud.google.com/blog/topics/partners/available-first-on-google-cloud-intel-optane-dc-persistent-memory
https://cloud.google.com/blog/topics/partners/available-first-on-google-cloud-intel-optane-dc-persistent-memory
https://bitfusion.io
https://bitfusion.io
https://ebpf.io/
https://ebpf.io/
https://www.graphcore.ai
https://azure.microsoft.com/en-us/blog/introducing-new-product-innovations-for-sap-hana-expanded-ai-collaboration-with-sap-and-more/
https://azure.microsoft.com/en-us/blog/introducing-new-product-innovations-for-sap-hana-expanded-ai-collaboration-with-sap-and-more/
https://developer.nvidia.com/blog/nvidia-releases-open-source-gpu-kernel-modules/
https://developer.nvidia.com/blog/nvidia-releases-open-source-gpu-kernel-modules/
https://developer.nvidia.com/blog/optimizing-recurrent-neural-networks-cudnn-5/
https://developer.nvidia.com/blog/optimizing-recurrent-neural-networks-cudnn-5/
https://doc.dpdk.org/guides/
https://doi.org/10.1145/3465332.3470875
https://doi.org/10.1109/HPCS48598.2019.9188169
https://doi.org/10.1109/HPCS48598.2019.9188169
https://doi.org/10.1007/978-3-030-67667-4_26

Towards a Machine Learning-Assisted Kernel with LAKE ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

for Computing Machinery, New York, NY, USA, 67–74. https://doi.org/10.1145/
3409963.3410492

[17] Eli Cortez, Anand Bonde, Alexandre Muzio, Mark Russinovich, Marcus Fontoura,
and Ricardo Bianchini. 2017. Resource central: Understanding and predicting
workloads for improved resource management in large cloud platforms. In Pro-
ceedings of the 26th Symposium on Operating Systems Principles. 153–167.

[18] John Demme, Matthew Maycock, Jared Schmitz, Adrian Tang, Adam Waksman,
Simha Sethumadhavan, and Salvatore Stolfo. 2013. On the Feasibility of Online
Malware Detection with Performance Counters. SIGARCH Comput. Archit. News
41, 3 (June 2013), 559–570. https://doi.org/10.1145/2508148.2485970

[19] Thaleia Dimitra Doudali, Sergey Blagodurov, Abhinav Vishnu, Sudhanva Gu-
rumurthi, and Ada Gavrilovska. 2019. Kleio: A Hybrid Memory Page Sched-
uler with Machine Intelligence. In Proceedings of the 28th International Sym-
posium on High-Performance Parallel and Distributed Computing (HPDC ’19).
Association for Computing Machinery, New York, NY, USA, 37–48. https:
//doi.org/10.1145/3307681.3325398

[20] Peter Druschel, Larry L. Peterson, and Bruce S. Davie. 1994. Experiences with
a High-Speed Network Adaptor: A Software Perspective. In Proceedings of the
Conference on Communications Architectures, Protocols and Applications (SIG-
COMM ’94). Association for Computing Machinery, New York, NY, USA, 2–13.
https://doi.org/10.1145/190314.190315

[21] José Duato, Antonio J Pena, Federico Silla, Juan C Fernandez, Rafael Mayo, and
Enrique S Quintana-Orti. 2011. Enabling CUDA Acceleration within Virtual
Machines using rCUDA. In 2011 18th International Conference on High Performance
Computing. IEEE, 1–10.

[22] E. Eskin, Wenke Lee, and S. J. Stolfo. 2001. Modeling system calls for intru-
sion detection with dynamic window sizes. In Proceedings DARPA Informa-
tion Survivability Conference and Exposition II. DISCEX’01, Vol. 1. 165–175 vol.1.
https://doi.org/10.1109/DISCEX.2001.932213

[23] Henrique Fingler and Isha Tarte. 2022. utcs-scea/LAKE-linux-6.0: v1. (Nov. 2022).
https://doi.org/10.5281/zenodo.7277147

[24] Henrique Fingler, Isha Tarte, and ishaaaa. 2022. utcs-scea/LAKE: v1. (Nov. 2022).
https://doi.org/10.5281/zenodo.7277139

[25] Henrique Fingler, Zhiting Zhu, Esther Yoon, Zhipeng Jia, Emmett Witchel, and
Christopher J. Rossbach. 2022. DGSF: Disaggregated GPUs for Serverless Func-
tions. In 2022 IEEE International Parallel and Distributed Processing Symposium
(IPDPS). 739–750. https://doi.org/10.1109/IPDPS53621.2022.00077

[26] Gaddisa Olani Ganfure, Chun-Feng Wu, Yuan-Hao Chang, and Wei-Kuan Shih.
2020. DeepPrefetcher: A Deep Learning Framework for Data Prefetching in
Flash Storage Devices. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems 39, 11 (2020), 3311–3322. https://doi.org/10.1109/TCAD.
2020.3012173

[27] Mathias Gottschlag, Marius Hillenbrand, Jens Kehne, Jan Stoess, and Frank Bel-
losa. 2013. LoGV: Low-overhead GPGPU virtualization. In High Performance
Computing and Communications & 2013 IEEE International Conference on Em-
bedded and Ubiquitous Computing (HPCC_EUC), 2013 IEEE 10th International
Conference on. IEEE, 1721–1726.

[28] Shay Gueron. 2009. Intel’s New AES Instructions for Enhanced Performance and
Security. In FSE.

[29] Vishakha Gupta, Ada Gavrilovska, Karsten Schwan, Harshvardhan Kharche,
Niraj Tolia, Vanish Talwar, and Parthasarathy Ranganathan. 2009. GViM: GPU-
accelerated Virtual Machines. In Proceedings of the 3rd ACMWorkshop on System-
level Virtualization for High Performance Computing. ACM, 17–24.

[30] Mike Halcrow. 2007. ECryptfs: A stacked cryptographic filesystem. Linux Journal
2007 (04 2007).

[31] Sangjin Han, Keon Jang, KyoungSoo Park, and Sue Moon. 2011. PacketShader:
a GPU-accelerated software router. ACM SIGCOMM Computer Communication
Review 41, 4 (2011), 195–206.

[32] Mingzhe Hao, Levent Toksoz, Nanqinqin Li, Edward Edberg Halim, Henry Hoff-
mann, and Haryadi S. Gunawi. 2020. LinnOS: Predictability on Unpredictable
Flash Storage with a Light Neural Network. In 14th USENIX Symposium on Operat-
ing Systems Design and Implementation (OSDI 20). USENIX Association, 173–190.
https://www.usenix.org/conference/osdi20/presentation/hao

[33] Shifu Hou, Aaron Saas, Lifei Chen, and Yanfang Ye. 2016. Deep4MalDroid: A Deep
Learning Framework for Android Malware Detection Based on Linux Kernel
System Call Graphs. In 2016 IEEE/WIC/ACM International Conference on Web
Intelligence Workshops (WIW). 104–111. https://doi.org/10.1109/WIW.2016.040

[34] Jack Tigar Humphries, Neel Natu, Ashwin Chaugule, Ofir Weisse, Barret Rhoden,
Josh Don, Luigi Rizzo, Oleg Rombakh, Paul Turner, and Christos Kozyrakis.
2021. GhOSt: Fast & Flexible User-Space Delegation of Linux Scheduling. In
Proceedings of the ACM SIGOPS 28th Symposium on Operating Systems Principles
(SOSP ’21). Association for Computing Machinery, New York, NY, USA, 588–604.
https://doi.org/10.1145/3477132.3483542

[35] Tyler Hunt, Zhipeng Jia, Vance Miller, Ariel Szekely, Yige Hu, Christopher J.
Rossbach, and Emmett Witchel. 2020. Telekine: Secure Computing with Cloud
GPUs. In 17th USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI 20). USENIX Association, Santa Clara, CA, 817–833. https:
//www.usenix.org/conference/nsdi20/presentation/hunt

[36] Paras Jain, Xiangxi Mo, Ajay Jain, Harikaran Subbaraj, Rehan Sohail Durrani,
Alexey Tumanov, Joseph Gonzalez, and Ion Stoica. 2018. Dynamic Space-Time
Scheduling for GPU Inference. In Thirty-second Conference on Neural Information
Processing Systems.

[37] Norman P. Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal,
Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, Rick Boyle,
Pierre-luc Cantin, Clifford Chao, Chris Clark, Jeremy Coriell, Mike Daley, Matt
Dau, Jeffrey Dean, Ben Gelb, Tara Vazir Ghaemmaghami, Rajendra Gottipati,
William Gulland, Robert Hagmann, C. Richard Ho, Doug Hogberg, John Hu,
Robert Hundt, Dan Hurt, Julian Ibarz, Aaron Jaffey, Alek Jaworski, Alexander
Kaplan, Harshit Khaitan, Daniel Killebrew, Andy Koch, Naveen Kumar, Steve
Lacy, James Laudon, James Law, Diemthu Le, Chris Leary, Zhuyuan Liu, Kyle
Lucke, Alan Lundin, Gordon MacKean, Adriana Maggiore, Maire Mahony, Kieran
Miller, Rahul Nagarajan, Ravi Narayanaswami, Ray Ni, Kathy Nix, Thomas Norrie,
Mark Omernick, Narayana Penukonda, Andy Phelps, Jonathan Ross, Matt Ross,
Amir Salek, Emad Samadiani, Chris Severn, Gregory Sizikov, Matthew Snelham,
Jed Souter, Dan Steinberg, Andy Swing, Mercedes Tan, Gregory Thorson, Bo
Tian, Horia Toma, Erick Tuttle, Vijay Vasudevan, Richard Walter, Walter Wang,
Eric Wilcox, and Doe Hyun Yoon. 2017. In-Datacenter Performance Analysis
of a Tensor Processing Unit. In Proceedings of the 44th Annual International
Symposium on Computer Architecture (ISCA ’17). ACM, New York, NY, USA, 1–12.
https://doi.org/10.1145/3079856.3080246

[38] Kostis Kaffes, Dragos Sbirlea, Yiyan Lin, David Lo, and Christos Kozyrakis. 2020.
Leveraging Application Classes to Save Power in Highly-Utilized Data Centers.
In Proceedings of the 11th ACM Symposium on Cloud Computing (SoCC ’20).
Association for Computing Machinery, New York, NY, USA, 134–149. https:
//doi.org/10.1145/3419111.3421274

[39] Y. Kang, Y. Kee, E. L. Miller, and C. Park. 2013. Enabling cost-effective data
processing with smart SSD. In 2013 IEEE 29th Symposium on Mass Storage Systems
and Technologies (MSST). 1–12.

[40] Emilia Käsper and Peter Schwabe. 2009. Faster and timing-attack resistant
AES-GCM. In International Workshop on Cryptographic Hardware and Embedded
Systems. Springer, 1–17.

[41] Ahmed Khawaja, Joshua Landgraf, Rohith Prakash, Michael Wei, Eric Schkufza,
and Christopher J Rossbach. 2018. Sharing, Protection, and Compatibility for
Reconfigurable Fabric with AmorphOS. In 13th USENIX Symposium on Operating
Systems Design and Implementation (OSDI’18). 107–127.

[42] Gyuwan Kim, Hayoon Yi, Jangho Lee, Yunheung Paek, and Sungroh Yoon.
2016. LSTM-Based System-Call Language Modeling and Robust Ensem-
ble Method for Designing Host-Based Intrusion Detection Systems. (2016).
arXiv:cs.CR/1611.01726

[43] Jonghyeon Kim, Wonkyo Choe, and Jeongseob Ahn. 2021. Exploring the Design
Space of Page Management for Multi-Tiered Memory Systems. In 2021 USENIX
Annual Technical Conference (USENIX ATC 21). USENIX Association, 715–728.
https://www.usenix.org/conference/atc21/presentation/kim-jonghyeon

[44] Joongi Kim, Keon Jang, Kyung A Lee, Sangwook Ma, Junhyun Shim, and Sunny
Moon. 2015. NBA (network balancing act): A high-performance packet processing
framework for heterogeneous processors. Proceedings of the 10th European
Conference on Computer Systems, EuroSys 2015 (04 2015). https://doi.org/10.1145/
2741948.2741969

[45] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss, Werner
Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher, et al. 2019.
Spectre attacks: Exploiting speculative execution. In 2019 IEEE Symposium on
Security and Privacy (SP). IEEE, 1–19.

[46] Tim Kraska, Alex Beutel, Ed H. Chi, Jeffrey Dean, and Neoklis Polyzotis. 2018.
The Case for Learned Index Structures. In Proceedings of the 2018 International
Conference on Management of Data (SIGMOD ’18). Association for Computing Ma-
chinery, New York, NY, USA, 489–504. https://doi.org/10.1145/3183713.3196909

[47] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. 2012. ImageNet Classi-
fication with Deep Convolutional Neural Networks. In Proceedings of the 25th
International Conference on Neural Information Processing Systems - Volume 1
(NIPS’12). Curran Associates Inc., Red Hook, NY, USA, 1097–1105.

[48] Patrick Kutch. 2011. PCI-SIG SR-IOV Primer: An introduction to SR-IOV Tech-
nology. Intel application note (2011), 321211–002.

[49] Arezki Laga, Jalil Boukhobza, Michel Koskas, and Frank Singhoff. 2016. Lynx:
a learning linux prefetching mechanism for SSD performance model. In 2016
5th Non-Volatile Memory Systems and Applications Symposium (NVMSA). 1–6.
https://doi.org/10.1109/NVMSA.2016.7547186

[50] Arezki Laga, Jalil Boukhobza, Michel Koskas, and Frank Singhoff. 2016. Lynx:
a learning linux prefetching mechanism for SSD performance model. In 2016
5th Non-Volatile Memory Systems and Applications Symposium (NVMSA). 1–6.
https://doi.org/10.1109/NVMSA.2016.7547186

[51] A. Laga, J. Boukhobza, M. Koskas, and F. Singhoff. 2016. Lynx: a learning linux
prefetching mechanism for SSD performance model. In 2016 5th Non-Volatile
Memory Systems and Applications Symposium (NVMSA). 1–6.

[52] Joshua Landgraf, Tiffany Yang, Will Lin, Christopher J. Rossbach, and Eric
Schkufza. 2021. Compiler-Driven FPGA Virtualization with SYNERGY. In Pro-
ceedings of the 26th ACM International Conference on Architectural Support for

860

https://doi.org/10.1145/3409963.3410492
https://doi.org/10.1145/3409963.3410492
https://doi.org/10.1145/2508148.2485970
https://doi.org/10.1145/3307681.3325398
https://doi.org/10.1145/3307681.3325398
https://doi.org/10.1145/190314.190315
https://doi.org/10.1109/DISCEX.2001.932213
https://doi.org/10.5281/zenodo.7277147
https://doi.org/10.5281/zenodo.7277139
https://doi.org/10.1109/IPDPS53621.2022.00077
https://doi.org/10.1109/TCAD.2020.3012173
https://doi.org/10.1109/TCAD.2020.3012173
https://www.usenix.org/conference/osdi20/presentation/hao
https://doi.org/10.1109/WIW.2016.040
https://doi.org/10.1145/3477132.3483542
https://www.usenix.org/conference/nsdi20/presentation/hunt
https://www.usenix.org/conference/nsdi20/presentation/hunt
https://doi.org/10.1145/3079856.3080246
https://doi.org/10.1145/3419111.3421274
https://doi.org/10.1145/3419111.3421274
https://arxiv.org/abs/cs.CR/1611.01726
https://www.usenix.org/conference/atc21/presentation/kim-jonghyeon
https://doi.org/10.1145/2741948.2741969
https://doi.org/10.1145/2741948.2741969
https://doi.org/10.1145/3183713.3196909
https://doi.org/10.1109/NVMSA.2016.7547186
https://doi.org/10.1109/NVMSA.2016.7547186

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Henrique Fingler, Isha Tarte, Hangchen Yu, Ariel Szekely, Bodun Hu, Aditya Akella, and Christopher J. Rossbach

Programming Languages and Operating Systems (ASPLOS ’21). Association for
Computing Machinery, New York, NY, USA, 818–831. https://doi.org/10.1145/
3445814.3446755

[53] W. Lin, C. Tu, C. Yeh, and S. Hung. 2017. GPU acceleration for Kernel Samepage
Merging. In 2017 IEEE 23rd International Conference on Embedded and Real-Time
Computing Systems and Applications (RTCSA). 1–6.

[54] Ming Liu, Zhi Xue, Xianghua Xu, Changmin Zhong, and Jinjun Chen. 2018.
Host-Based Intrusion Detection System with System Calls: Review and Future
Trends. ACM Comput. Surv. 51, 5, Article 98 (Nov. 2018), 36 pages. https:
//doi.org/10.1145/3214304

[55] Jean-Pierre Lozi, Baptiste Lepers, Justin Funston, Fabien Gaud, Vivien Quéma,
and Alexandra Fedorova. 2016. The Linux Scheduler: A Decade of Wasted
Cores. In Proceedings of the Eleventh European Conference on Computer Systems
(EuroSys ’16). Association for Computing Machinery, New York, NY, USA, Article
1, 16 pages. https://doi.org/10.1145/2901318.2901326

[56] Martin Maas, David G. Andersen, Michael Isard, Mohammad Mahdi Javanmard,
Kathryn S. McKinley, and Colin Raffel. 2020. Learning-Based Memory Allocation
for C++ Server Workloads. Association for Computing Machinery, New York, NY,
USA, 541–556. https://doi.org/10.1145/3373376.3378525

[57] Hasan Al Maruf and Mosharaf Chowdhury. 2020. Effectively Prefetching Remote
Memory with Leap. In 2020 USENIX Annual Technical Conference (USENIX ATC
20). USENIX Association, 843–857. https://www.usenix.org/conference/atc20/
presentation/al-maruf

[58] Mitesh R. Meswani, Sergey Blagodurov, David Roberts, John Slice, Mike Igna-
towski, and Gabriel H. Loh. 2015. Heterogeneous memory architectures: A
HW/SW approach for mixing die-stacked and off-package memories. In 2015
IEEE 21st International Symposium on High Performance Computer Architecture
(HPCA). 126–136. https://doi.org/10.1109/HPCA.2015.7056027

[59] Atul Negi and P Kishore Kumar. 2005. Applying machine learning techniques to
improve linux process scheduling. In TENCON 2005-2005 IEEE Region 10 Confer-
ence. IEEE, 1–6.

[60] Rajiv Nishtala, Paul Carpenter, Vinicius Petrucci, and Xavier Martorell. 2017.
Hipster: Hybrid Task Manager for Latency-Critical Cloud Workloads. In 2017
IEEE International Symposium on High Performance Computer Architecture (HPCA).
409–420. https://doi.org/10.1109/HPCA.2017.13

[61] Marco Nobile, Paolo Cazzaniga, Andrea Tangherloni, and Daniela Besozzi. 2016.
Graphics processing units in bioinformatics, computational biology and systems
biology. Briefings in Bioinformatics 18 (07 2016), bbw058. https://doi.org/10.1093/
bib/bbw058

[62] Amy Ousterhout, Joshua Fried, Jonathan Behrens, Adam Belay, and Hari Balakr-
ishnan. 2019. Shenango: Achieving High CPU Efficiency for Latency-sensitive
Datacenter Workloads. In 16th USENIX Symposium on Networked Systems De-
sign and Implementation (NSDI 19). USENIX Association, Boston, MA, 361–378.
https://www.usenix.org/conference/nsdi19/presentation/ousterhout

[63] Sébastien Pinneterre, Spyros Chiotakis, Michele Paolino, and Daniel Raho. 2018.
vFPGAmanager: A Virtualization Framework for Orchestrated FGPA Accelerator
Sharing in 5G Cloud Environments. In 2018 IEEE International Symposium on
Broadband Multimedia Systems and Broadcasting (BMSB). IEEE, 1–5.

[64] I. Pratt and K. Fraser. 2001. Arsenic: a user-accessible gigabit Ethernet interface.
In Proceedings IEEE INFOCOM 2001. Conference on Computer Communications.
Twentieth Annual Joint Conference of the IEEE Computer and Communications
Society (Cat. No.01CH37213), Vol. 1. 67–76 vol.1.

[65] Yiming Qiu, Hongyi Liu, Thomas Anderson, Yingyan Lin, and Ang Chen. 2021.
Toward Reconfigurable Kernel Datapaths with Learned Optimizations. In Pro-
ceedings of the Workshop on Hot Topics in Operating Systems (HotOS ’21). As-
sociation for Computing Machinery, New York, NY, USA, 175–182. https:
//doi.org/10.1145/3458336.3465288

[66] Rajat Raina, Anand Madhavan, and Andrew Y. Ng. 2009. Large-Scale Deep
Unsupervised Learning Using Graphics Processors. In Proceedings of the 26th
Annual International Conference on Machine Learning (ICML ’09). Association for
Computing Machinery, New York, NY, USA, 873–880. https://doi.org/10.1145/
1553374.1553486

[67] Carlos Reaño, Antonio J Peña, Federico Silla, José Duato, Rafael Mayo, and
Enrique S Quintana-Ortí. 2012. CU2rCU: Towards the Complete rCUDA Remote
GPU Virtualization and Sharing Solution. In 2012 19th International Conference
on High Performance Computing. IEEE, 1–10.

[68] Christopher J Rossbach, Jon Currey, Mark Silberstein, Baishakhi Ray, and Emmett
Witchel. 2011. PTask: operating system abstractions to manage GPUs as compute
devices. In Proceedings of the Twenty-Third ACM Symposium on Operating Systems
Principles. ACM, 233–248.

[69] Lin Shi, Hao Chen, Jianhua Sun, and Kenli Li. 2012. vCUDA: GPU-Accelerated
High-Performance Computing in Virtual Machines. IEEE Trans. Comput. 61, 6
(2012), 804–816.

[70] Elizabeth Shriver, Christopher Small, and Keith A. Smith. 1999. Why Does File
System Prefetching Work?. In Proceedings of the Annual Conference on USENIX
Annual Technical Conference (ATEC ’99). USENIX Association, USA, 6.

[71] Warren Smith, Ian Foster, and Valerie Taylor. 2006. Predicting application run times
using historical information. Vol. 64. 122–142. https://doi.org/10.1007/BFb0053984

[72] Pavel Sukharev, Dmitry Silnov, and Maxim Shishkin. 2019. Determining Optimal
Mining Work Size on the OpenCL Platform for the Ethereum Cryptocurrency.
International Journal on Advanced Science, Engineering and Information Technology
9 (10 2019), 1528. https://doi.org/10.18517/ijaseit.9.5.5820

[73] Weibin Sun and Robert Ricci. 2013. Augmenting operating systems with the
GPU. arXiv preprint arXiv:1305.3345 (2013).

[74] Weibin Sun and Robert Ricci. 2013. Fast and flexible: parallel packet process-
ing with GPUs and click. In Proceedings of the ninth ACM/IEEE symposium on
Architectures for networking and communications systems. IEEE Press, 25–36.

[75] Weibin Sun, Robert Ricci, and Matthew L Curry. 2012. GPUstore: harnessing GPU
computing for storage systems in the kernel. In Proceedings of the 5th Annual
International Systems and Storage Conference. ACM, 9.

[76] Sukanya Suranauwarat and Hideo Taniguchi. 2001. The Design, Implementa-
tion and Initial Evaluation of an Advanced Knowledge-Based Process Scheduler.
SIGOPS Oper. Syst. Rev. 35, 4 (Oct. 2001), 61–81. https://doi.org/10.1145/506084.
506090

[77] Yusuke Suzuki, Shinpei Kato, Hiroshi Yamada, and Kenji Kono. 2014. GPUvm:
Why not virtualizing GPUs at the hypervisor?. In 2014 USENIX Annual Technical
Conference (USENIX ATC 14). 109–120.

[78] Kun Tian, Yaozu Dong, and David Cowperthwaite. 2014. A Full GPU Virtual-
ization Solution with Mediated Pass-Through. In 2014 USENIX Annual Technical
Conference (USENIX ATC’14). 121–132.

[79] Stavros Volos, Kapil Vaswani, and Rodrigo Bruno. 2018. Graviton: Trusted
Execution Environments on GPUs. In 13th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 18). USENIX Association, Carlsbad,
CA, 681–696. https://www.usenix.org/conference/osdi18/presentation/volos

[80] T. von Eicken, A. Basu, V. Buch, and W. Vogels. 1995. U-Net: A User-Level
Network Interface for Parallel and Distributed Computing. In Proceedings of the
Fifteenth ACM Symposium on Operating Systems Principles (SOSP ’95). Association
for Computing Machinery, New York, NY, USA, 40–53. https://doi.org/10.1145/
224056.224061

[81] Lan Vu, Hari Sivaraman, and Rishi Bidarkar. 2014. GPU Virtualization for High
Performance General Purpose Computing on the ESX Hypervisor. In Proceedings
of the High Performance Computing Symposium (HPC ’14). Society for Computer
Simulation International, San Diego, CA, USA, Article 2, 8 pages. http://dl.acm.
org/citation.cfm?id=2663510.2663512

[82] Yawen Wang, Daniel Crankshaw, Neeraja J. Yadwadkar, Daniel Berger, Chris-
tos Kozyrakis, and Ricardo Bianchini. 2022. SOL: Safe on-Node Learning in
Cloud Platforms. In Proceedings of the 27th ACM International Conference on
Architectural Support for Programming Languages and Operating Systems (ASP-
LOS 2022). Association for Computing Machinery, New York, NY, USA, 622–634.
https://doi.org/10.1145/3503222.3507704

[83] Zhiyuan Xu, Jian Tang, Chengxiang Yin, Yanzhi Wang, and Guoliang Xue. 2019.
Experience-Driven Congestion Control: When Multi-Path TCP Meets Deep Re-
inforcement Learning. IEEE Journal on Selected Areas in Communications 37, 6
(2019), 1325–1336. https://doi.org/10.1109/JSAC.2019.2904358

[84] Tsung Tai Yeh, Amit Sabne, Putt Sakdhnagool, Rudolf Eigenmann, and Timothy G
Rogers. 2017. Pagoda: Fine-grained GPU Resource Virtualization for Narrow
Tasks. In ACM SIGPLAN Notices, Vol. 52. ACM, 221–234.

[85] Hangchen Yu, Arthur Michener Peters, Amogh Akshintala, and Christopher J.
Rossbach. 2020. AvA: Accelerated Virtualization of Accelerators. Association for
Computing Machinery, New York, NY, USA, 807–825. https://doi.org/10.1145/
3373376.3378466

[86] Xiao Zhang, Eric Tune, Robert Hagmann, Rohit Jnagal, Vrigo Gokhale, and John
Wilkes. 2013. CPI2: CPU Performance Isolation for Shared Compute Clusters. In
Proceedings of the 8th ACM European Conference on Computer Systems (EuroSys
’13). Association for Computing Machinery, New York, NY, USA, 379–391. https:
//doi.org/10.1145/2465351.2465388

[87] Yiying Zhang and Yutong Huang. 2019. “Learned”: Operating Systems. SIGOPS
Oper. Syst. Rev. (July 2019), 40–45. https://doi.org/10.1145/3352020.3352027

Received 2022-07-07; accepted 2022-09-22

861

https://doi.org/10.1145/3445814.3446755
https://doi.org/10.1145/3445814.3446755
https://doi.org/10.1145/3214304
https://doi.org/10.1145/3214304
https://doi.org/10.1145/2901318.2901326
https://doi.org/10.1145/3373376.3378525
https://www.usenix.org/conference/atc20/presentation/al-maruf
https://www.usenix.org/conference/atc20/presentation/al-maruf
https://doi.org/10.1109/HPCA.2015.7056027
https://doi.org/10.1109/HPCA.2017.13
https://doi.org/10.1093/bib/bbw058
https://doi.org/10.1093/bib/bbw058
https://www.usenix.org/conference/nsdi19/presentation/ousterhout
https://doi.org/10.1145/3458336.3465288
https://doi.org/10.1145/3458336.3465288
https://doi.org/10.1145/1553374.1553486
https://doi.org/10.1145/1553374.1553486
https://doi.org/10.1007/BFb0053984
https://doi.org/10.18517/ijaseit.9.5.5820
https://doi.org/10.1145/506084.506090
https://doi.org/10.1145/506084.506090
https://www.usenix.org/conference/osdi18/presentation/volos
https://doi.org/10.1145/224056.224061
https://doi.org/10.1145/224056.224061
http://dl.acm.org/citation.cfm?id=2663510.2663512
http://dl.acm.org/citation.cfm?id=2663510.2663512
https://doi.org/10.1145/3503222.3507704
https://doi.org/10.1109/JSAC.2019.2904358
https://doi.org/10.1145/3373376.3378466
https://doi.org/10.1145/3373376.3378466
https://doi.org/10.1145/2465351.2465388
https://doi.org/10.1145/2465351.2465388
https://doi.org/10.1145/3352020.3352027

	Abstract
	1 Introduction
	2 Background
	2.1 OS Kernels and ML
	2.2 Accelerators

	3 Motivation
	3.1 Discussion

	4 Kernel Acceleration with LAKE
	4.1 System Workflow
	4.2 Modulating Accelerator Use
	4.3 Contention Management
	4.4 High-Level APIs

	5 In-kernel Feature Registry
	5.1 Design for Performance
	5.2 Schema
	5.3 Asynchrony and Module Boundaries
	5.4 Simplifying Batch Management
	5.5 Feature Registry Case Study

	6 Implementation
	6.1 Discussion: Security Implications
	6.2 Source Code

	7 Evaluation
	7.1 End-to-end Study: I/O Latency Prediction
	7.2 Page Warmth Classification
	7.3 Load Balancing
	7.4 Filesystem Prefetching
	7.5 Malware Detection
	7.6 User/Kernel Contention
	7.7 Non-ML Acceleration Opportunities
	7.8 CPU Utilization

	8 Related work
	9 Conclusion
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact Check-List (Meta-Information)
	A.3 Description
	A.4 Installation
	A.5 Experiment Workflow
	A.6 Evaluation and Expected Results
	A.7 Experiment Customization
	A.8 Methodology

	References

